
Formal Methods for Cyber-Physical Systems
Complete Course Notes

Contents

1 Introduction to Cyber-Physical Systems 3
1.1 Definition and Key Features 3
1.2 Examples of Cyber-Physical Systems 3
1.3 Design Challenges . 3
1.4 A Better Way to Find and Fix Bugs 4

2 Formal Models for Cyber-Physical Systems 4
2.1 Fundamentals of Computational Models 4

2.1.1 Functional vs. Reactive Computation 4
2.1.2 Sequential vs. Concurrent Computation 5

2.2 Synchronous Reactive Components 5
2.2.1 Synchrony Hypothesis 5
2.2.2 Formal Definition of Synchronous Reactive Components 5
2.2.3 Executions of Synchronous Reactive Components . . . 6
2.2.4 Event-based Communication 6

2.3 Composition of Components 7
2.3.1 Compatibility of Components 7
2.3.2 Parallel Composition 7

2.4 Extended State Machines . 8

3 Safety Requirements and Verification 9
3.1 Formal Requirements . 9
3.2 Safety vs. Liveness . 9
3.3 Invariants of Transition Systems 9
3.4 Requirement-Based Design 10
3.5 Safety Monitors . 10
3.6 Automated Invariant Verification 11

3.6.1 Decidability of Invariant Verification 11
3.6.2 On-the-fly Enumerative Search 11

1

4 Symbolic Verification Algorithms 11
4.1 Symbolic State Representation 11

4.1.1 Image Computation 13
4.1.2 Pre-Image Computation 13

4.2 Binary Decision Diagrams . 14
4.3 Symbolic Reachability Analysis 14
4.4 Witness Generation . 15

5 Liveness Requirements and Verification 15
5.1 Temporal Logic . 15

5.1.1 LTL Semantics . 15
5.1.2 Derived Operators . 17

5.2 Büchi Automata . 17
5.3 From LTL to Büchi Automata 18
5.4 Repeatability Checking . 18

6 Controller Synthesis for Discrete-Event Systems 20
6.1 Discrete-Event Systems . 20
6.2 Supervisory Control Theory 21
6.3 Controller Synthesis Algorithm 21
6.4 Extended Finite Automata for Controller Synthesis 22

7 Case Studies 22
7.1 Machine-Warehouse Example 22
7.2 Workcell with an AGV . 23
7.3 Manufacturing Process Requirements 23

8 Conclusion 24
8.1 Summary of Key Concepts 24
8.2 Applications of Formal Methods 24
8.3 Future Directions . 24

2

1 Introduction to Cyber-Physical Systems

1.1 Definition and Key Features

Definition 1 (Cyber-Physical System). A cyber-physical system (CPS) is
a collection of computing devices that communicate with one another and
interact with the physical world via sensors and actuators.

Cyber-physical systems integrate computation, networking, and physical
processes. Components of a CPS include:

• Cyber components: Computing platforms, software, communica-
tion networks

• Physical components: Mechanical systems, electrical systems, phys-
ical processes

• Interface components: Sensors (to observe physical world) and ac-
tuators (to affect physical world)

1.2 Examples of Cyber-Physical Systems

Cyber-physical systems are found in various domains:

• Medical systems: MRI scanners, robotic surgery, pacemakers

• Transportation: Autonomous vehicles, traffic control systems

• Manufacturing: Industrial robots, production lines

• Energy: Smart grids, power plants

• Aerospace: Aircraft control systems, drones

1.3 Design Challenges

Designing cyber-physical systems presents numerous challenges:

• Correctness: Ensuring system behaves according to specifications
under all conditions

• Reliability: Maintaining operation in the presence of component fail-
ures

• Real-time constraints: Meeting timing requirements for interac-
tions with physical world

• Concurrency: Managing multiple simultaneous activities

• Safety and security: Preventing harm to users and environment

3

1.4 A Better Way to Find and Fix Bugs

Traditional approaches to debugging often involve extensive testing, which
cannot guarantee the absence of errors. Formal methods offer:

• Mathematical precision: Rigorous definitions of system behavior

• Systematic analysis: Comprehensive checking of all possible behav-
iors

• Early error detection: Finding bugs during design rather than after
deployment

• Automatic code generation: Creating correct-by-construction im-
plementations

Example 1 (MRI Scanner Bug). In an MRI scanner (a cyber-physical sys-
tem), there was a software error where the operator could not move the table
up when it was partially inside the scanner—behavior that was counterintu-
itive for users. Using formal methods, engineers could:

• Model the system behavior precisely

• Specify the desired property (table should be movable in all positions)

• Verify that the property is violated in the current design

• Generate correct control software that ensures the property is satisfied

2 Formal Models for Cyber-Physical Systems

2.1 Fundamentals of Computational Models

2.1.1 Functional vs. Reactive Computation

• Functional computation:

– Maps inputs to outputs (e.g., sorting algorithm)

– Terminates after producing result

– Described by mathematical functions

• Reactive computation:

– Ongoing interaction with environment

– Non-terminating (continuously responsive)

– Described by sequences of input/output interactions

4

2.1.2 Sequential vs. Concurrent Computation

• Sequential computation:

– Single sequence of instructions

– Well-understood model (e.g., Turing machines)

• Concurrent computation:

– Multiple simultaneous activities

– Interaction between components

– Two main paradigms: synchronous and asynchronous

2.2 Synchronous Reactive Components

2.2.1 Synchrony Hypothesis

Definition 2 (Synchrony Hypothesis). The time needed to execute the com-
ponent’s computation is negligible compared to the delay between successive
input arrivals. Under this hypothesis, computation is considered to take zero
time, and outputs are produced simultaneously with inputs.

Implications of the synchrony hypothesis:

• Execution of update code takes zero time

• Production of outputs and reception of inputs occurs simultaneously

• When multiple components are composed, all execute synchronously

2.2.2 Formal Definition of Synchronous Reactive Components

Definition 3 (Synchronous Reactive Component). A synchronous reactive
component C is defined by a tuple (I,O, S, Init,React) where:

• I is a set of typed input variables, defining set QI of possible inputs

• O is a set of typed output variables, defining set QO of possible outputs

• S is a set of typed state variables, defining set QS of possible states

• Init is initialization code defining set Init of initial states

• React is reaction description defining set React of reactions of form

s
i/o−−→ t, where s, t are states, i is an input, and o is an output

Example 2 (Delay Component). A simple delay component that outputs
its previous input:

5

• Input variable: in of type Boolean

• Output variable: out of type Boolean

• State variable: x of type Boolean, initialized to 0

• Reaction description: out := x; x := in

This component delays the input by one round.

2.2.3 Executions of Synchronous Reactive Components

Definition 4 (Execution). Given component C = (I,O, S, Init,React), an

execution is a sequence: s0
i1/o1−−−→ s1

i2/o2−−−→ s2
i3/o3−−−→ s3 . . . where:

• s0 ∈ Init is an initial state

• For each round n ≥ 1, sn−1
in/on−−−→ sn ∈ React

2.2.4 Event-based Communication

Components can communicate using events:

• An event can be absent (⊥) or present with a value

• event(T) is a type for event variables with values of type T

• x? tests if event x is present

• x!v assigns value v to event x (making it present)

• If no value is assigned to an output event, it is absent by default

Example 3 (Second-To-Minute). A component that emits an output event
every 60th time the input event is present:

1 event second

2 int x := 0

3 if second? then {

4 x := x + 1;

5 if x == 60 then {

6 minute !;

7 x := 0

8 }

9 }

10 event minute

6

2.3 Composition of Components

2.3.1 Compatibility of Components

Definition 5 (Task Graph). For a synchronous reactive component with
input variables I, output variables O, state variables S, and local variables
L, a task graph consists of:

• A set of tasks, where each task A is specified by:

– Read-set RA ⊆ I ∪ S ∪O ∪ L
– Write-set WA ⊆ S ∪O ∪ L
– Update code defining Update ⊆ QRA

×QWA

• A precedence relation ≺ over tasks

Requirements for well-formed task graphs:

1. The precedence relation ≺ must be acyclic

2. Each output variable is in the write-set of exactly one task

3. Output/local variables are written before being read

4. Tasks with write conflicts must be ordered

Definition 6 (Interface). The interface of a component C consists of:

• Input variables I

• Output variables O

• Await dependencies ≻, where y ≻ x means output y awaits input x

Definition 7 (Component Compatibility). Components C1 and C2 with
await-dependency relations ≻1 and ≻2 are compatible if:

• Sets O1 and O2 are disjoint (no common outputs)

• The relation (≻1 ∪ ≻2) of combined await-dependencies is acyclic

2.3.2 Parallel Composition

Definition 8 (Parallel Composition). Given compatible components C1 =
(I1, O1, S1, Init1,React1) and C2 = (I2, O2, S2, Init2,React2), their parallel
composition C = C1 ∥ C2 is:

• Input variables: (I1 ∪ I2) \ (O1 ∪O2)

• Output variables: O1 ∪O2

7

• State variables: S1 ∪ S2

• Initialization: Init1; Init2

• Reaction description: Combined task graph with:

– Tasks: Π1 ∪Π2

– Precedence: ≺1 ∪ ≺2 ∪{(A,A′) | A ∈ Π1, A
′ ∈ Π2,WA ∩ RA′ ̸=

∅ ∨WA′ ∩RA ̸= ∅}

Properties of parallel composition:

• Commutative: C1 ∥ C2 = C2 ∥ C1

• Associative: (C1 ∥ C2) ∥ C3 = C1 ∥ (C2 ∥ C3)

Example 4 (Double Delay). To create a component that delays input by
two rounds:

1. Create two instances of Delay: Delay1 and Delay2

2. Connect output of Delay1 to input of Delay2 via variable temp

3. Compose: (Delay1 ∥ Delay2) \ temp

2.4 Extended State Machines

Definition 9 (Extended Finite State Machine). An Extended Finite State
Machine (EFSM) is a synchronous reactive component where:

• State variables include a special variable ”mode” ranging over a finite
set

• Reaction description is given by mode switches, each specified by:

– Source mode and target mode

– Guard condition

– Update code for state variables

Example 5 (Switch Component).

offstart on

press=1

press=1 ∨ x≥10

press=0 ∧ x¡10, x:=x+1

press=0

This component has:

• Input variable: press of type Boolean

8

• State variables: mode ∈ {off, on} and x of type integer (initialized to
0)

• Four mode switches as shown in the diagram

3 Safety Requirements and Verification

3.1 Formal Requirements

Definition 10 (Requirement). A requirement is a desirable property of the
executions of a system.

Types of requirements:

• Informal: Stated in natural language or implicit

• Formal: Stated explicitly in a mathematically precise manner

Definition 11 (Verification Problem). Given a requirement ϕ and a sys-
tem/model C, the verification problem is to prove or disprove that the system
C satisfies the requirement ϕ.

3.2 Safety vs. Liveness

Definition 12 (Safety Requirement). A safety requirement states that a
system always stays within ”good” states—nothing bad ever happens.

Definition 13 (Liveness Requirement). A liveness requirement states that
a system eventually attains its goal—something good eventually happens.

Key differences:

• Safety violations can be demonstrated by finite executions

• Liveness violations require infinite executions

• Different analysis techniques are needed for each type

3.3 Invariants of Transition Systems

Definition 14 (Transition System). A transition system T has:

• A set S of typed state variables, defining a set QS of states

• Initialization Init for state variables, defining a set Init ⊆ QS of initial
states

• Transition description Trans, defining a set Trans ⊆ QS ×QS of tran-
sitions

9

Definition 15 (Reachable State). A state s of a transition system is reach-
able if there is an execution starting in an initial state and ending in s.

Definition 16 (Invariant). A property ϕ (a Boolean-valued expression over
state variables) is an invariant of transition system T if every reachable state
satisfies ϕ.

Safety verification approach:

• Express the desired safety requirement as a property ϕ over state vari-
ables

• Check if ϕ is an invariant of the system

• If ϕ is not an invariant, find a counterexample (execution leading to a
state violating ϕ)

3.4 Requirement-Based Design

Requirement-based design is a systematic approach to designing systems:

• Given: Input/output interface of system C, model E of the environ-
ment, safety property ϕ

• Design problem: Fill in details of C so that the composite system
C ∥ E satisfies the invariant ϕ

Example 6 (Railroad Controller). Consider a railroad system with two
trains approaching a bridge from opposite directions. The bridge can ac-
commodate only one train at a time, and each entrance is equipped with a
signal.

Safety Requirement: Trains should not be on the bridge simultaneously.
Controller Design:

• Environment model: Train components that can be in states {away,
wait, bridge}

• Controller interface: Controls signals {red, green} at each entrance

• Design task: Develop a controller that ensures the safety property
”¬(modeW = bridge ∧ modeE = bridge)”

3.5 Safety Monitors

Definition 17 (Safety Monitor). A monitor M for a system observes its
inputs/outputs and enters an error state if undesirable behavior is detected.
Formally, a monitor is specified as an extended state machine with:

• Input variables = input/output variables of the system being monitored

10

• A subset F of modes declared as accepting (error states)

Safety verification with monitors:

• Undesirable behavior: an execution that leads monitor to an accepting
state

• Safety verification: Check whether ”(monitor.mode /∈ F)” is an invari-
ant of System C ∥M

Example 7 (Fairness Monitor for Railroad). To check that while the west
train waits, the east train is not allowed on the bridge twice in succession:

0start 1 2 3
modeW = waitmodeE = bridgemodeE = bridge

3.6 Automated Invariant Verification

3.6.1 Decidability of Invariant Verification

Theorem 1. The invariant verification problem is undecidable in general.

Theorem 2. The invariant verification problem for finite-state systems is
decidable.

For finite-state systems:

• If T has k Boolean variables, the total number of states is 2k

• Verifier can systematically search through all possible states

• Complexity is exponential in time (and polynomial in memory)

3.6.2 On-the-fly Enumerative Search

Properties of DFS Search:

• Correctness: If the algorithm returns ∅, the property ϕ is not reach-
able; if it returns a sequence of states, this is a witness execution

• Termination: If the number of reachable states is finite, the algorithm
terminates

4 Symbolic Verification Algorithms

4.1 Symbolic State Representation

Definition 18 (Region). A region over variables X is a data structure that
represents a set of states assigning values to X.

11

Algorithm 1 On-the-fly DFS Search (Part 1)

1: function Reachable(T, ϕ)
2: Reach← ∅
3: s← FirstInitState(T)
4: while s ̸= null do
5: if s /∈ Reach then
6: exec← DFS(s, ϕ,Reach)
7: if exec ̸= ∅ then
8: return exec
9: end if

10: end if
11: s← NextInitState(T, s)
12: end while
13: return ∅
14: end function

Algorithm 2 On-the-fly DFS Search (Part 2)

1: function DFS(s, ϕ,Reach)
2: Reach← Reach ∪ {s}
3: if Satisfies(s, ϕ) then
4: return List(s)
5: end if
6: t← FirstSuccState(T, s)
7: while t ̸= null do
8: if t /∈ Reach then
9: exec← DFS(t, ϕ,Reach)

10: if exec ̸= ∅ then
11: return Append(s, exec)
12: end if
13: end if
14: t← NextSuccState(T, s, t)
15: end while
16: return ∅
17: end function

12

Symbolic representation of a transition system T with state variables S:

• Region ϕI over S for initial states

• Region ϕT over S ∪ S′ for transitions, where S′ represents primed
variables (values in the target state)

Basic operations on regions:

• Union(A,B): Returns region containing states in either A or B

• Intersect(A,B): Returns region containing states in both A and B

• Diff(A,B): Returns region containing states in A but not in B

• IsEmpty(A): Returns True if region A contains no states

• Exists(A,X): Returns projection of A by quantifying variables in X

• Rename(A,X, Y): Renames variables in X to corresponding variables
in Y

4.1.1 Image Computation

Definition 19 (Post-Image). Given a region A, the post-image Post(A) is
the set of successors of states in A: Post(A) = {t | there exists a state s ∈
A and a transition (s, t)}

Symbolic computation of post-image:

Post(A,Trans) = Rename(Exists(Intersect(A,Trans), S), S′, S) (1)

Steps:

1. Take intersection of A and Trans

2. Project out variables in S using existential quantification

3. Rename primed variables to get a region over S

4.1.2 Pre-Image Computation

Definition 20 (Pre-Image). Given a region A, the pre-image Pre(A) is the
set of predecessors of states in A: Pre(A) = {s | there exists a state t ∈
A and a transition (s, t)}

Symbolic computation of pre-image:

Pre(A,Trans) = Exists(Intersect(Rename(A,S, S′),Trans), S′) (2)

Steps:

1. Rename S to primed variables to get a region over S′

2. Take intersection with Trans

3. Project out variables in S′ using existential quantification

13

4.2 Binary Decision Diagrams

Definition 21 (Binary Decision Diagram). A Binary Decision Diagram
(BDD) is a data structure for representing Boolean functions as directed
acyclic graphs.

Definition 22 (Reduced Ordered Binary Decision Diagram). A Reduced
Ordered Binary Decision Diagram (ROBDD) is a BDD where:

• Variables appear in the same order on each path

• Isomorphic subgraphs are merged

• Redundant nodes (where low and high children are identical) are elim-
inated

Key properties of ROBDDs:

• Canonical: For a given variable ordering, each Boolean function has a
unique ROBDD

• Minimal: Smallest possible decision graph given the ordering restric-
tion

• Efficient operations for Boolean operations (AND, OR, NOT)

• Efficient satisfiability and validity checking

ROBDD operations:

• True(): Returns the ROBDD for constant 1

• False(): Returns the ROBDD for constant 0

• Var(x): Returns the ROBDD for the formula x

• Not(B): Returns the ROBDD for ¬f(B)

• And(B1, B2): Returns the ROBDD for f(B1) ∧ f(B2)

• Or(B1, B2): Returns the ROBDD for f(B1) ∨ f(B2)

• Exists(B,X): Returns the ROBDD for ∃X.f(B)

4.3 Symbolic Reachability Analysis

Properties of symbolic search:

• Correctness: When the algorithm stops, its answer (whether property
ϕ is reachable) is correct

• Termination: Number of iterations depends on the length of shortest
execution leading to a state satisfying ϕ or the diameter of the state
space

• Efficiency depends on the symbolic representation (e.g., ROBDDs)

14

Algorithm 3 Symbolic Breadth-First-Search Algorithm

1: function SymbolicReachable(Init, Trans, ϕ)
2: Reach← Init
3: New← Init
4: while not IsEmpty(New) do
5: if not IsEmpty(Intersect(New, ϕ)) then
6: return True
7: end if
8: New← Diff(Post(New,Trans),Reach)
9: Reach← Union(Reach,New)

10: end while
11: return False
12: end function

4.4 Witness Generation

To modify the symbolic breadth-first search algorithm to generate witnesses:
Additional operations required:

• PickState(A): Returns a state contained in region A

• Pre(s,Trans): Computes set of predecessors of state s

5 Liveness Requirements and Verification

5.1 Temporal Logic

Definition 23 (Linear Temporal Logic (LTL)). Linear Temporal Logic is
a formal language for specifying properties of infinite sequences (traces) of
states.

Basic components:

• Base formulas: Boolean-valued expressions over state variables

• Logical connectives: ∧, ∨, ¬, →

• Temporal operators: □ (always), ♢ (eventually), ⃝ (next), U (until)

5.1.1 LTL Semantics

Let ρ = q1, q2, q3, . . . be a trace (infinite sequence of valuations).

• ρ |= ϕ for a base formula ϕ if q1 |= ϕ

• ρ |= □ϕ if for all j ≥ 1, (qj , qj+1, qj+2, . . .) |= ϕ

15

Algorithm 4 Symbolic Breadth-First-Search with Witness Generation

1: function WitnessReachable(Init, Trans, ϕ)
2: Reach← Init
3: New1 ← Init
4: k ← 1
5: while not IsEmpty(Newk) do
6: if not IsEmpty(Intersect(Newk, ϕ)) then
7: s← PickState(Intersect(Newk, ϕ))
8: path← [s] ▷ path is a list of states
9: for i ∈ {k − 1, . . . , 1} do

10: Pred← Intersect(Pre(s,Trans),Newi)
11: s← PickState(Pred)
12: append s to the head of path
13: end for
14: return path
15: end if
16: Newk+1 ← Diff(Post(Newk,Trans),Reach)
17: Reach← Union(Reach,Newk+1)
18: k ← k + 1
19: end while
20: return [] ▷ ϕ not reachable: return empty path
21: end function

16

• ρ |= ♢ϕ if for some j ≥ 1, (qj , qj+1, qj+2, . . .) |= ϕ

• ρ |=⃝ϕ if (q2, q3, q4, . . .) |= ϕ

• ρ |= ϕUψ if for some j ≥ 1, (qj , qj+1, qj+2, . . .) |= ψ and for all i < j,
(qi, qi+1, qi+2, . . .) |= ϕ

5.1.2 Derived Operators

• Repeatedly ϕ = □♢ϕ: ϕ holds infinitely often

• Persistently ϕ = ♢□ϕ: ϕ eventually holds forever

Example 8 (Railroad Controller Requirements in LTL). • Safety: Trains
should not be on bridge simultaneously □¬(modeW = bridge∧modeE =
bridge)

• Liveness: A waiting west train is eventually allowed to enter □(modeW =
wait→ ♢(signalW = green))

• Conditional liveness: If east train doesn’t stay on bridge forever, west
train is allowed to enter when waiting □♢(modeE ̸= bridge)→ □(modeW =
wait→ ♢(signalW = green))

5.2 Büchi Automata

Definition 24 (Büchi Automaton). A Büchi automatonM = ⟨V,Q, Init, F, E⟩
consists of:

• V : set of Boolean input variables

• Q: finite set of states

• Init ⊆ Q: set of initial states

• F ⊆ Q: set of accepting states

• E: set of edges, where each edge is of the form q
Guard−−−−→ q′ with Guard

being a Boolean condition over V

Definition 25 (Accepting Run). Given an input trace ρ = v1, v2, v3, . . . over
V , an accepting run ofM over ρ is an infinite sequence of states q0, q1, q2, . . .
such that:

• q0 ∈ Init

• For each i, there exists an edge qi
Guard−−−−→ qi+1 such that input vi satis-

fies Guard

17

• There are infinitely many positions i such that qi ∈ F

Definition 26 (Generalized Büchi Automaton). A generalized Büchi au-
tomaton has k accepting sets F1, F2, . . . , Fk. An execution is accepting if for
each j, some state in Fj appears infinitely often.

5.3 From LTL to Büchi Automata

Theorem 3. For any LTL formula ϕ, there exists a Büchi automaton Mϕ

that accepts exactly those traces that satisfy ϕ.

The tableau construction algorithm converts an LTL formula to a Büchi
automaton:

1. Define Sub(ϕ), the closure of formula ϕ, containing:

• All syntactic subformulas of ϕ

• For each subformula ψ, also include ¬ψ
• For temporal operators, include their ”next-time” parts (e.g., for
□ψ, include ⃝□ψ)

2. Define states of the automaton as consistent subsets of Sub(ϕ) satis-
fying:

• For every ψ ∈ Sub(ϕ), either ψ or ¬ψ is in the state

• States satisfy propositional logic rules (e.g., ψ1∧ψ2 is in the state
iff both ψ1 and ψ2 are)

• States satisfy rules for temporal operators based on their induc-
tive definitions

3. Define transitions between states based on next-formulas

4. Define accepting conditions to ensure eventualities are satisfied

5.4 Repeatability Checking

Definition 27 (Repeatable Property). Given a transition system and a set
F of states, F is repeatable if there exists an infinite execution that visits
states in F infinitely often.

To check whether a system C satisfies an LTL formula ϕ:

1. Construct the Büchi automaton M¬ϕ for the negation of ϕ

2. Check if the set of accepting states is repeatable in the composition of
C and M¬ϕ

Finding witnesses for repeatability:

18

Algorithm 5 Symbolic Repeatability Algorithm

1: function SymbolicRepeatable(Init, F, Trans)
2: ▷ Phase 1: compute Reach
3: Reach← Init
4: New← Init
5: while not IsEmpty(New) do
6: New← Diff(Post(New,Trans),Reach)
7: Reach← Union(Reach,New)
8: end while
9: ▷ Phase 2: check repeatability

10: Recur← Intersect(Reach, F)
11: while not IsEmpty(Recur) do
12: PreReach← ∅
13: New← Pre(Recur,Trans)
14: while not IsEmpty(New) do
15: PreReach← Union(PreReach,New)
16: if IsSubset(Recur,PreReach) then
17: return True
18: end if
19: New← Diff(Pre(New,Trans),PreReach)
20: end while
21: Recur← Intersect(Recur,PreReach)
22: end while
23: return False
24: end function

19

1. Find a state s in the final Recur set

2. Compute set R = {t ∈ Recur | t is reachable from s with path ≥ 1}

3. If s ∈ R, build a loop from s to s

4. Connect this loop to an initial state to form a lasso-shaped witness

6 Controller Synthesis for Discrete-Event Systems

6.1 Discrete-Event Systems

Definition 28 (Discrete-Event System). A discrete-event system is a model
where:

• Time is discrete

• At every step, exactly one event happens

• Components communicate by sharing events

Definition 29 (Automaton). An automaton M = ⟨Q,E,→, q0, F ⟩ consists
of:

• Finite set Q of states

• Finite set E of events

• Transition relation →⊆ Q× E ×Q

• Initial state q0 ∈ Q

• Set F ⊆ Q of marked (accepting) states

Definition 30 (Language of an Automaton). For an automaton M :

• Generated language: L(M) = {w ∈ E∗ | q0
w−→}

• Marked language: Lm(M) = {w ∈ E∗ | q0
w−→ q′, q′ ∈ F}

Properties of automata:

• Deadlock: a state with no outgoing transitions

• Blocking: a state that cannot reach a marked state

• Non-blocking: every reachable state can reach a marked state

20

6.2 Supervisory Control Theory

Definition 31 (Plant and Supervisor). In supervisory control:

• The plant P is an automaton representing the physical system

• The supervisor S is an automaton that controls the plant by enabling/dis-
abling events

• Events are partitioned into controllable events Ec and uncontrollable
events Eu

Definition 32 (Controllability). A supervisor S is controllable for a plant
P with set of uncontrollable events Eu if whenever w ∈ L(P ∥ S) and
wu ∈ L(P) for some u ∈ Eu, then also wu ∈ L(P ∥ S).

Definition 33 (Proper Supervisor). An automaton S is a proper supervisor
for a plant P if:

• P ∥ S is non-blocking

• S is controllable for plant P

Definition 34 (Maximal Permissiveness). Given a plant P , a proper su-
pervisor S is maximally permissive if for each proper supervisor S′, it holds
that Lm(P ∥ S′) ⊆ Lm(P ∥ S).

6.3 Controller Synthesis Algorithm

Basic supervisory control problem:

• Given a plant P with set of uncontrollable events Eu

• Find a maximally permissive proper supervisor S for P

Algorithm steps:

1. Start with the uncontrolled plant as a candidate supervisor

2. Repeat until no more blocking states are found:

(a) Compute the set of blocking states

(b) Compute the set of bad states (blocking states and states that
can reach a bad state via uncontrollable events)

(c) Remove transitions with controllable events that target bad states

(d) Remove unreachable states and transitions

Theorem 4. The supervisor S produced by the synthesis algorithm is:

• A proper supervisor for plant P

• Maximally permissive

21

6.4 Extended Finite Automata for Controller Synthesis

Definition 35 (Extended Finite Automaton). An extended finite automa-
ton extends a standard automaton with:

• A set of discrete variables with finite domains

• Guards on transitions (predicates over variables)

• Updates on transitions (assignments to variables)

Controller synthesis with extended finite automata:

1. Define plant and requirements as extended finite automata

2. Create parallel composition of plant and requirements

3. Compute non-blocking conditions symbolically

4. Compute bad state conditions (states that lead to controllability is-
sues)

5. Tighten guards on controllable transitions to avoid bad states

State-based requirements:

• Event conditions: {e1, . . . , en} ⇒ Pred (events can only occur when
predicate is satisfied)

• Invariants: Predicates that must hold in all states

7 Case Studies

7.1 Machine-Warehouse Example

Example 9 (Machine-Warehouse System). A system consisting of:

• Machine: processes workpieces, has states IDLE and BUSY

• Warehouse: stores finished workpieces, has states EMPTY, HALF,
and FULL

• Events: start (machine starts processing), finish (machine finishes and
workpiece goes to warehouse), remove (warehouse removes a work-
piece)

Requirements:

1. The warehouse stores at most one workpiece

Synthesis steps:

22

1. Model machine and warehouse as automata

2. Create the uncontrolled plant by parallel composition

3. Formalize the requirement as an automaton

4. Apply synthesis algorithm to generate a proper supervisor

The resulting supervisor ensures the machine can only start processing
when the warehouse is empty.

7.2 Workcell with an AGV

Example 10 (Workcell with Automated Guided Vehicle). A workcell con-
sisting of:

• Two machines M1 and M2

• An automated guided vehicle (AGV)

• Events: start M1, start M2 (controllable), end M1, end M2 (uncon-
trollable), to B (AGV takes workpiece to buffer B)

Requirements:

1. Ensure safe operation of the system

2. Prevent deadlocks

Synthesis results in a supervisor that controls the start operations of ma-
chines to ensure proper flow of workpieces.

7.3 Manufacturing Process Requirements

Example 11 (Manufacturing Process). A manufacturing system with:

• Multiple machines that can be IDLE, ACTIVE, or DOWN

• A buffer that can be EMPTY or FULL

• Events for machine operations and state changes

Requirements expressed using event conditions and invariants:

1. Machine 1 can start processing only if the buffer is empty

2. Machine 2 can start processing only if the buffer is full

3. Machine 1 cannot start if Machine 2 is down

4. If both machines are down, Machine 2 is repaired before Machine 1

The requirements are formalized using extended finite automata and state-
based specifications.

23

8 Conclusion

8.1 Summary of Key Concepts

This course has covered the following key areas of formal methods for cyber-
physical systems:

• Formal Models: Synchronous reactive components, extended state
machines, discrete-event systems

• Safety Verification: Invariants, reachability analysis, monitors

• Symbolic Algorithms: BDDs, symbolic state representation, image
computation

• Liveness Verification: Temporal logic, Büchi automata, repeatabil-
ity checking

• Controller Synthesis: Supervisory control theory, extended finite
automata for synthesis

8.2 Applications of Formal Methods

Formal methods provide significant benefits in the design of cyber-physical
systems:

• Early detection of design flaws

• Systematic exploration of all possible behaviors

• Automatic generation of correct-by-construction controllers

• Clear documentation of system requirements and properties

• Increased confidence in safety-critical systems

8.3 Future Directions

Active research areas in formal methods for cyber-physical systems include:

• Scalability of verification techniques

• Integration with machine learning

• Formal methods for distributed and adaptive systems

• Human-in-the-loop cyber-physical systems

• Security verification for cyber-physical systems

24

	Introduction to Cyber-Physical Systems
	Definition and Key Features
	Examples of Cyber-Physical Systems
	Design Challenges
	A Better Way to Find and Fix Bugs

	Formal Models for Cyber-Physical Systems
	Fundamentals of Computational Models
	Functional vs. Reactive Computation
	Sequential vs. Concurrent Computation

	Synchronous Reactive Components
	Synchrony Hypothesis
	Formal Definition of Synchronous Reactive Components
	Executions of Synchronous Reactive Components
	Event-based Communication

	Composition of Components
	Compatibility of Components
	Parallel Composition

	Extended State Machines

	Safety Requirements and Verification
	Formal Requirements
	Safety vs. Liveness
	Invariants of Transition Systems
	Requirement-Based Design
	Safety Monitors
	Automated Invariant Verification
	Decidability of Invariant Verification
	On-the-fly Enumerative Search

	Symbolic Verification Algorithms
	Symbolic State Representation
	Image Computation
	Pre-Image Computation

	Binary Decision Diagrams
	Symbolic Reachability Analysis
	Witness Generation

	Liveness Requirements and Verification
	Temporal Logic
	LTL Semantics
	Derived Operators

	Büchi Automata
	From LTL to Büchi Automata
	Repeatability Checking

	Controller Synthesis for Discrete-Event Systems
	Discrete-Event Systems
	Supervisory Control Theory
	Controller Synthesis Algorithm
	Extended Finite Automata for Controller Synthesis

	Case Studies
	Machine-Warehouse Example
	Workcell with an AGV
	Manufacturing Process Requirements

	Conclusion
	Summary of Key Concepts
	Applications of Formal Methods
	Future Directions

